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OUTLINE

Motivation
ZX-calculus and Pauli-gadgets
Compression of Quantum Circuits for Hamiltonian
Simulation
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MOTIVATION

NISQ: Restrictions on number of qubits and gates
Shallow and simple quantum circuit structures are crucial
Increasing popularity of diagrammatic approaches to quantum
computing
Used tool: ZX-calculus

Member of the Helmholtz Association February 24, 2025 Slide 3



ZX-calculus and Pauli-gadgets
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ZX-DIAGRAMS: GENERATORS
Spiders:

m
{

α... ...
}

n := |0, . . . ,0⟩︸ ︷︷ ︸
n

⟨0, . . . ,0|︸ ︷︷ ︸
m

+eiα |1, . . . ,1⟩︸ ︷︷ ︸
n

⟨1, . . . ,1|︸ ︷︷ ︸
m

, (1)

m
{

α... ...
}

n := |+, . . . ,+⟩︸ ︷︷ ︸
n

⟨+, . . . ,+|︸ ︷︷ ︸
m

+eiα |−, . . . ,−⟩︸ ︷︷ ︸
n

⟨−, . . . ,−|︸ ︷︷ ︸
m

(2)

Hadamard:
= 1/

√
2
(

1 1
1 −1

)
(3)

1
Van de Wetering, J.: ZX-calculus for the working quantum computer scientist, 2020, arXiv: 2012.13966 [quant-ph].
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ZX-DIAGRAMS: ONLY CONNECTIVITY
MATTERS

π/2
π/2

π

π/4
= π/2

π/2
π

π/4

(4)

1
Van de Wetering, J.: ZX-calculus for the working quantum computer scientist, 2020, arXiv: 2012.13966 [quant-ph].
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ZX-CALCULUS

A presentation of the ZX-calculus. All rules hold for all α, β ∈ R and due to (h) and (hh) for all colors interchanged. These rules
only hold up to a non-zero scalar.

1
Van de Wetering, J.: ZX-calculus for the working quantum computer scientist, 2020, arXiv: 2012.13966 [quant-ph].
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PHASE-GADGETS
The Z-phase gadgets ΦZ

n (α) : C⊗n −→ C⊗n are a family of unitary maps and
are recursively defined as:

ΦZ
1 (α) := Z (α),

ΦZ
n+1(α) := (1n ⊗ CNOT (n + 1,n))(ΦZ

n ⊗ 11)(1n ⊗ CNOT (n + 1,n))
(5)

In ZX-calculus:

ΦZ
n (α) =

α

...

, ΦX
n (α) =

α

...

(6)

2
Cowtan, A. et al.: Phase Gadget Synthesis for Shallow Circuits. Electronic Proceedings in Theoretical Computer Science

318, pp. 213–228, 2020, https://doi.org/10.4204%2Feptcs.318.13.
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PAULI-GADGETS
Let s be a word over the alphabet {X ,Y ,Z}, then a Pauli-gadget P(α, s) is
defined as U(s)ΦZ

|s|(α)U(s)† where the unitary U(s) is defined recursively
over s:

U(Zs′) = I ⊗ U(s′), U(Ys′) = X (π/2)⊗ U(s′), U(Xs′) = H ⊗ U(s′) (7)

Example:

e−iαZXIY =

2α

π
2 −π

2

:=

2α

(8)

2
Cowtan, A. et al.: Phase Gadget Synthesis for Shallow Circuits. Electronic Proceedings in Theoretical Computer Science

318, pp. 213–228, 2020, https://doi.org/10.4204%2Feptcs.318.13.
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FUSION AND TURNOVER RULES

Let s be a Pauli-string, then for all α and β:

P(α, s)P(β, s) = P(α+ β, s) (9)

Two gadgets with an even number of legs on the same wires
commute.

α1 γ1

β1

... ...

......

...

... =

β2

α2

...

...

...

...

γ2

...

...
, α1

β1

γ1

...

...
= β2

α2

...

γ2

...
... ...

2
Cowtan, A. et al.: Phase Gadget Synthesis for Shallow Circuits. Electronic Proceedings in Theoretical Computer Science

318, pp. 213–228, 2020, https://doi.org/10.4204%2Feptcs.318.13.
3

Winderl, D. et al.: A recursively partitioned approach to architecture- aware ZX Polynomial synthesis and optimization, 2023,
arXiv: 2303.17366 [quant- ph]

Member of the Helmholtz Association February 24, 2025 Slide 10



Diagrammatic Compression
for Hamiltonian Simulation

Member of the Helmholtz Association February 24, 2025 Slide 11



HAMILTONIAN SIMULATION
Time evolution operator:

U(t0, t1) = τ exp

(
−i
∫ t1

t0
H(t)dt

)
, H(t) =

∑
ℓ

Hℓ(t) (10)

By discretization in time and Trotter decomposition:
Approximate time evolution operator by

U(nt∆t) =
nt−1∏
k=0

Unt−k (∆t), Uk (∆t) =
∏
ℓ

exp(−iHℓ,k∆t). (11)

U(nt∆t) = U1(∆t) U2(∆t) Unt (∆t)
...

...

...

5
Camps, D. et al.: An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian Simulation. SIAM Journal on Matrix

Analysis and Applications 43 (3), pp. 1084–1108, 2022, https://doi.org/10.1137%F21m1439298.
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COMPRESSION USING TURNOVER
OPERATIONS

Definition
Define a block Bi(Θ⃗) as a structure that satisfies

1 Fusion: Bi(α⃗)Bi(β⃗) = Bi(a⃗)
2 Commutation: Bi(α⃗)Bj(β⃗) = Bj(β⃗)Bi(α⃗) for | i − j |> 1

3 Turnover: Bi(α⃗)Bi+1(β⃗)Bi(γ⃗) = Bi+1(a⃗)Bi(b⃗)Bi+1(c⃗)

4
Kökcü, E. et al.: Algebraic compression of quantum circuits for Hamiltonian evolution. Physical Review A 105 (3), 2022,

https://doi.org/10.1103%2Fphysreva.105.032420.
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MERGING A TROTTER STEP INTO A
CONSTANT-DEPTH TRIANGLE

1

1

1

2

2

5
Camps, D. et al.: An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian Simulation. SIAM Journal on Matrix

Analysis and Applications 43 (3), pp. 1084–1108, 2022, https://doi.org/10.1137%F21m1439298.
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COMPRESSION ALGORITHM

Input: Trotter circuit C on N spins with nt time-steps, nt > N/2
Output: Compressed N × N Trotter circuit C′ equivalent to C

1: C′ ← TriangleCircuit(C′[:,1 : N])
2: for l = N + 1 to 2nt do
3: MergeLayer(C′,C[:, l])
4: C′ ← SquareCircuit(C′)

4
Camps, D. et al.: An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian Simulation. SIAM Journal on Matrix

Analysis and Applications 43 (3), pp. 1084–1108, 2022, https://doi.org/10.1137%F21m1439298.
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BLOCKS IN ZX-CALCULUS

Kitaev Chain:

α

H(t) =

N−1∑
i=1

J
αi
i (t)σ

αi
i σ

αi
i+1, for αi ∈ {x, y, z}, αi ̸= αi+1 (12)

XY-Model:
α

β

H(t) =

N−1∑
i=1

Jαi (t)σα
i σ

α
i+1 + Jβi (t)σβ

i σ
β
i+1, for α ̸= β ∈ {x, y, z} (13)

Transverse Field XY-Model:
α

β

ϵ

ζ

γ δ

H(t) =

N−1∑
i=1

Jx
i (t)σ

x
i σ

x
i+1 + Jy

i (t)σ
y
i σ

y
i+1 +

N∑
i=1

hz
i (t)σ

z
i (14)
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KITAEV-COMPRESSION FOR 5 QUBITS

One Trotter timestep (top left). The constant-depth square circuit for 5 qubits (top right).

The constant-depth triangle circuit for 5 qubits (bottom).
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KITAEV CHAIN WITH THREE-BODY
INTERACTION

H(t) =
N−2∑
i=1

Jαi
i (t)σαi

i σαi
i+1σ

αi
i+2, (15)

for αi ̸= αi+1 and the restriction that αi ∈ {x , z}, αi ∈ {x , y} or αi ∈ {y , z} for
all i (i.e. only two different types of Pauli-α occur).

The constant depth square for 6 qubits. The compression of one Pauli-ZZZ gadget (highlighted) in ZX-calculus for 6
qubits.
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SUMMARY AND OUTLOOK

Usefulness of diagramming tools (ZX-calculus) to show circuit
compression
Re-derived constant-depth properties for several (Ising-, Kitaev-,
XY-, TFXY-, TFIM-) models
Showed constant-depth properties for three-spin interaction Kitaev
model
Indications for constant-depth properties for three-spin
transverse-field Ising model
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Thanks for your attention!



Hamiltonian Simulation
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HAMILTONIAN SIMULATION
Time evolution operator:

U(t0, t1) = τ exp

(
−i
∫ t1

t0
H(t)dt

)
, H(t) =

∑
ℓ

Hℓ(t) (16)

By discretization in time and Trotter decomposition:
Approximate time evolution operator by

U(nt∆t) =
nt−1∏
k=0

Unt−k (∆t), Uk (∆t) =
∏
ℓ

exp(−iHℓ,k∆t). (17)

U(nt∆t) = U1(∆t) U2(∆t) Unt (∆t)
...

...

...

5
Camps, D. et al.: An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian Simulation. SIAM Journal on Matrix

Analysis and Applications 43 (3), pp. 1084–1108, 2022, https://doi.org/10.1137%F21m1439298.

Member of the Helmholtz Association February 24, 2025 Slide 22



CLASSICAL ISING MODEL

H(t) =
n−1∑
i=1

Jα
i (t)σ

α
i σ

α
i+1 +

n∑
i=1

hα
i (t)σ

α
i , α ∈ {x , y , z} (18)

Approximate time evolution operator for α = z:

β1
4

β1
3

β1
2

β1
1

β2
4

β2
3

β2
2

β2
1

γ1
1

γ1
2

γ1
3

γ1
4

γ1
5

γ2
1

γ2
2

γ2
3

γ2
4

γ2
5

...

...

...

... β
nt
4

β
nt
3

β
nt
2

β
nt
1

γ
nt
1

γ
nt
2

γ
nt
3

γ
nt
4

γ
nt
5

=

ϕ4

ϕ3

ϕ2

ϕ1

ψ1

ψ2

ψ3

ψ4

ψ5
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TRANSVERSE FIELD ISING MODEL

H(t) =
N−1∑
i=1

Jα
i (t)σ

α
i σ

α
i+1 +

N∑
i=1

hβ
i (t)σ

β
i (19)

γ1,1

γ2,1

θ̃1,1

θ̃2,1

γ3,1

γ1,2

γ2,2

θ1,2

θ̃2,2

γ3,2

γ1,3

γ2,3

θ̃1,3

θ2,3

γ3,3

γ̃1,3

γ̃2,2

θ̃1,2

θ̃2,2

γ̃3,2

γ̃1,3

γ̃2,3

θ̃1,3

θ̃2,3

γ̃3,3 γ̃3,5

γ̃2,4

θ̃2,1 θ̃2,4

γ̃3,4
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TRANSVERSE FIELD ISING MODEL WITH
THREE-BODY INTERACTION

H(t) =
N−2∑
i=1

Jz
i (t)σ

z
i σ

z
i+1σ

z
i+2 +

N∑
i=1

hx
i (t)σ

x
i (20)

...
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