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Why non-unitary 
evolutions matter
● Barren plateaus are a problem in finding the Barren plateaus are a problem in finding the 

true ground state  or global minimum with true ground state  or global minimum with 

a Quantum computera Quantum computer

● But nature can find stable local minima But nature can find stable local minima 

when cooling a systemwhen cooling a system

● In nature a system  loses energy to a bath In nature a system  loses energy to a bath 

with a non-unitary evolutionwith a non-unitary evolution System Bath

Unitary Non-Unitary

Local Minima in Quantum Systems
C.-F. Chen, H.-Y. Huang, J. Preskill, L. Zhou
Proceedings of the 56th Annual ACM 
Symposium on Theory of Computing
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Open-System Basics

● Open Systems are given by a quantum Open Systems are given by a quantum 

system coupled to a much larger quantum system coupled to a much larger quantum 

bathbath

● Described byDescribed by

1)1)   the Bloch-Redfield equation with a the Bloch-Redfield equation with a 
System, a spectral function and coupling System, a spectral function and coupling 
operatoroperator

2)2)   The Lindblad equationThe Lindblad equation
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Tooling to deal with 
open systems
● Representation of coupled subsystemsRepresentation of coupled subsystems

● Representation and manipulation of Representation and manipulation of 

spectral functions spectral functions  (equivalent to full BR) (equivalent to full BR)

● Representation of Lindblad SystemsRepresentation of Lindblad Systems



6

Tooling to deal with 
open systems
● Representation of coupled subsystemsRepresentation of coupled subsystems

● Representation and manipulation of Representation and manipulation of 

spectral functions (equivalent to full BR)spectral functions (equivalent to full BR)

● Representation of Linbldad SystemsRepresentation of Linbldad Systems



7

Non-unitary 
operations in quantum 
circuits
● Need to be treated on same level as unitary Need to be treated on same level as unitary 

operationsoperations

● Apply superoperator to density matrix Apply superoperator to density matrix 

instead of unitary matrix to stateinstead of unitary matrix to state

● Typical noise is a subsetTypical noise is a subset



8

Non-unitary  evolutions
on quantum computers

An implementation of a non-unitary (system-
bath) evolution on a quantum computers needs 
non-unitary gates. Two main approaches 
proposed:

1) Noise utilization:                    
Mapping non-unitary gates to intrinsic noise

2) Measurements:          
Coupling to external qubits, performing 
measurements, quantum feedback control

Qubits (bath ) with 
measurements, quantum 

feedback control

Qubits (bath ) 
and intrinsic noise

Qubits (system)

2) Measurements

Qubits (system)

1) Noise utilization

Stable Quantum-Correlated Many Body States via 
Engineered Dissipation,  
https://arxiv.org/abs/2304.13878
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Open quantum system models

The bath is described by the 
spectrum: 

environment

system

bath

broadenings
mode 
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couplings
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Coarse graining

● Spectral function fitted by broad modes 
(Lorentzians)

● Broad modes identified as auxiliary boson 
modes

● In particular, broadening            can be 
mapped to auxiliary-mode damping with rate 

broadenings mode frequencies

couplings

0
frequency

Sp
ec

tra
l f

un
ct

io
n

fit with 4 bath modes
target
fit
indiv. bath modes

0
frequency

fit with 4 bath modes+system noise
target
fit
indiv. bath modes
system noise

frequency

sp
ec

tr
al

 fu
nc

tio
n

Coarse graining by four modes



11

● One-to-one correspondence between the 
boson modes and auxiliary spins

● Bath gaussianity improved by letting the 
broad spin-modes overlap

● Applied if the device has widely 
distributed decoherence rates of bath 
qubits

aux-spins

Possible approach
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Coherent time-evolution implemented by unitary gates

Time-evolution operator

Total simulation time

Spin-spin Hamiltonian (approach 1)

aux-spins



13boson broadening

Non-unitary time-evolution by intrinsic noise

aux-spins
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Example results

bath bath

island
   

● Finite gate fidelity due to incoherent error
● Bath qubit error is damping
● System qubit has connectivity to all bath qubits
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Thank you!
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Q-EXA
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Thank you!
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