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Context & Problem Setting

Quantum Circuits

Quantum q :

' |
'_IJ Output Quantum State
Qubits

Quantum Gates 2

Challenges

— Vast design space

— Precision vs. computational cost

— Errors, Probabilistic Nature & NISQ
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Search-Based Software Engineering

Extensively used for classical software systems for about two decades [Harman et al. 2012]

Goal: Find a software system / program that will optimize a given fitness function

Advantages: rs,  Solution Space X fia

« Automated exploration by o X invalid

* Meta-heuristic searchers X . Dbjective Space
Genetic Programming (GP), ... f— [ Tx@

Challenges: Find a good - | e

1. Program encoding ’ = G

2 Fitness function [Klikovits et al. 2023]
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Typical GP Setup for Quantum Circuits

/Encoding: gate vector

o — H —o— |

~ H(target=0),
~  CNOT(target=1, control=0)

q1

N ]

~

/F ithess

behaviour: accuracy, and
structure: # gates, depth,

4 Operators

mutation: add / delete / move / alter / swap gate
change qubits, ...

crossover: one-point, two-point, ...

selection: tournament, ...

/
~

S # non-local gates, # parameters

/Algorith ms

use of classical meta-heuristic algorithms:
GA, NSGA-II, NSGA-III, ...

/

o

Is this all we need?
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Using GP for QSE (1): Synthesis
GP4QSE

Circuit Synthesis
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The processing of quantum information is defined by quantum

circuits. For applications on current quantum devices, these are
usually parameterized, i.e., they contain operations with variable
parameters. The design of such quantum circuits and aggregated
higher-level quantum operators is a challenging task which requires
significant knowledge in quantum information theory, provided a
polynomial-sized solution can be found analytically at all. Moreover,

finding an accurate solution with low computational cost repre-

sents a significant trade-off, particularly for the current generation
of quantum computers. To tackle these challenges, we propose a
multi-objective genetic programming approach—hybridized with a

numerical parameter optimizer—to automate the synthesis of pa-

rameterized quantum operators. To demonstrate the benefits of the
proposed approach, it is applied to a quantum circuit of a hybrid
quantum-classical algorithm, and then compared to an analytical
solution ns well as a noan-hvbrid version. The results show that

Hybrid Multi-Objective Genetic Programming for
Parameterized Quantum Operator Discovery

Stefan Klikovits Manuel Wimmer
Johannes Kepler University
Institute for Business Informatics - Institute for Business Informatics -
Software Engineering, CDL-MINT Software Engineering, CDL-MINT
Linz, Austria Linz, Austria
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1 INTRODUCTION

Quantum Computing. The current era of Quantum Computing (QC)
is referred to as the Noisy Intermediate-Scale Quantum (NISQ) era,
where the limitations of quantum hardware are mitigated by sig-
nificant means of classical computation [16). Analogously to logic
gates for classical computation, in QC, quantum information is
processed with operations called quantum gates. The most com-
monly used realistic model of QC is the so-called quantum circuit
model [14]. Quantum gates can be parameterized, where the use of
parameterized quantum circuits is common in the NISQ-era. This
is because classical optimization of the parameters, which consti-
tutes an NP-hard problem, allows to cope with the noise present in
current quantum hardware [3). For this reason, numerical parame-
ter optimizers constitute a central element of NISQ-era quantum
algorithms [3-5]. There is ongoing research on quantum-aware
optimizers, which are particularly capable of coping with specific

reauirements of narameterized auantum ecirenits (3.5 121




Scenario 1 - Operator Synthesis

Position of target state —

qo - - —

qi - - -

q ;- Quantum Operator I

I
a3 - - A
GP

G : ¥ 1 H—9—{ R,(—0.308) |- R,(0.308) |- R,(—0.308) |- R,(0.308) | f
o+ (R0 R} -p- D70 S
@ |77 S @ !
@ X|-D—e = & :

J z JOHANNES KEPLER
UNIVERSITY LINZ Gemeinhardt, Klikovits, Wimmer 2025



Our Approach: Search Scheme using GP

Target State , .
: ™| Multi-Objective Final Final
: P Pareto - Quantum
Overall > Genetic - N
Quantum Circuit Programming ront perator
)
User Config Selection from

Pareto Front
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Our Approach: Search Scheme using GP

Problem: Some gates (e.g., RXy,RYy, RZy) require parameters 6 € (0, 21)

Solution: Use Hybrid Search Scheme
— Apply parameter optimizer (Nelder-Mead) inside GP
Circuit

lﬁ optimization

Y Y

Hybrid
Target State , .
& ™| Multi-Objective Final Final
: | Pareto - Quantum
Overall - Genetic - N
Quantum Circuit Programming ront perator
i
User Config Selection from

Pareto Front
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Experimental Evaluation

RQ1: Hybrid vs Non-Hybrid - diversity?
RQ2: Hybrid vs Non-Hybrid - accuracy (i.e., overlap)?
RQ3: Hybrid vs Non-Hybrid vs. Analytical Solution?

Selected Case: GM-QAOA [Bartschi and Eidenbenz 2020]

Meta-heuristic search algorithm: NSGA-III
Implementation: Deap, Qiskit

Hybrid -

Non-Hybrid

2000 3000 4000 5000 6000
Runtime
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Hybrid
Non-Hybrid
Results
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+ faster convergence
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Using GP for QSE (2): Improvement

The Journal of Systems an! Software 219 (2025) 112223

) Ao Contents lists available at ScienceDirect
P ) The Journal of Systems & Software

journal homepage: www.elsaviar.com/locate/|ss

GP4QSE

SOFTWARE

-

GeQuPI: Quantum Program Improvement with Multi-Objective Genetic
Programming

Felix Gemeinhardt *, Stefan Klikovits, Manuel Wimmer
Johames Kepler Unbweraity Ling, fuciiate for Busines Informatics -~ Software Engieoering, Alesherger Sorause 69, Ling, 4040, Astria

ARTICLE INFO ABSTRACT

Keywords: Processing quantum information poses novel challenges regarding the debugging of faulty quantum programs
Quantvm compasing Notably, the lack of accessible Information on intermediate states during quantum processing, renders tradi
Lvolutsenary algorithes tional debugging techniques infeasible. Moreover, even correct quantum progranss might not be processable,

Quantem software engincering
Quantem circuit optimization

even for quantum computing experts.

T'o tackle these challenges, we propose a quantum program [mpeovement framework for an automated
generation of accurate and effickent solutions, coined Genetic Quantum Program Improver (GeQuPI). In
particulas, we focus on the tsks of debugging and optimization of quantum programs. Our framework uses
techniques from quantum information theory and applies multi-objective genetic programming, which can be
further hybridized with quantum-aware optimizers, To demonstrate the benefits of GeQuPT, it is applied to 47
quantum programs reused from literature and openly published libraries. The results show that our approsch
is capable of correcting faulty programs and optimize inefficient anes for the majority of the studied cases,

showing average optimizations of 35% with respect to computational cost,

=

a8 current quantum computers are limited in computation capacity, Thus, quantum program developers have
to consider trade-offs between accuracy (Le., probabilistically correct functiosality) and computational cost
of the proposed solutions. Manually finding sufficiently accurate and efficient solutions is a challenging task,

Circuit Improvement

Optimization Debugging

[Gemeinhardt et al. 2025]

meinhardt, Klikovits, Wimmer 2025
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Preliminary: Functionally-equivalent Quantum
Programs

Quantum Register 1

Reverse Reference and compare l T :-S-e;r-cL;d-: —1 s l

if Input == Output for specific — NPUL L Reference o P -+

. State | ' Program! State

input states [Burgholzer et al. 2020] - . i

Quantum Register 1

Extending t bit l _ESearched: (R f )_1 _:_
xtending to arbitrar . = : , ren = =

, 5 : X Input LF_’r_o_gza_n:: R o Output | |

input states using Bell-states i B B State

[Mohseni et al. 2008] T_ — — JI-

Quantum Register 2
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Search Setup Overview

Scenario 1: Debugging Scenario 2: Optimization

Legend
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Search Setup Overview

Scenario 2: Optimization

Reference
Program

i

Accuracy Population
Evaluation Seed
|
initial pop
fitness L]
Search
N 4 Conflg

Multi-Objective /
Genetic Programming

Y

Selected Individual | — Pareto Front of
Quantum Program [ L22€C Quantum Programs
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Search Setup Overview

Scenario 1: Debugging

Faulty
Program

Selected Individual |
Quantum Program |

Accuracy Population
Evaluation Seed
|
initial pop
fitness L]
Search
\ Config

Multi-Objective
Genetic Programming

e

select

Y

Pareto Front of
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Search Setup Overview

Scenario 1: Debugging Scenario 2: Optimization

Legend
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Evaluation

* RQ1: Debugging capabilities?
* RQ2: Optimization capabilities?

J ! JOHANNES KEPLER
UNIVERSITY LINZ

* 47 quantum programs (from literature and
open source projects)
° 9 for debugging
o 38 for optimization

e Setup
° Genetic Algorithm: NSGA-III
° Hybrid: 150 gen @ 40 pop
° Non-Hyb / Fixed: 1600 gen @ 100 pop

Gemeinhardt, Klikovits, Wimmer 2025 20



RQ1: Debugging capabilities?

Debugging capabilities: number of runs per category and use case.

° Hybrld can Optlmlze (Hybrid /Non-Hybrid /Fixed).
© for SpECiﬁC input States (a) RQ1.1 (Perfect Accuracy)
o W|th Non-Hybrid & Fixed sometimes Only Input state Problem Optimized Pareto Equal Worse  Faulty
equa”y good Solutions are found Specific QG_8 (2 qubits) 30/30/30 0/0/0 0/0/0 0/0/0
| QS0_6 (2 qubits) 26/0/0 4/30/30 0/0/0  0/0/0 |
QS0_5 (3 qubits) 30/30/30  0/0/0 0/0/0  0/0/0
. . . . SE_15 (4 qubi 30/30/30 0/0/0 0/0/0 0/0/0
* Hybrid can repair arbitrary input-state ET5 (4 qubits) 301 1o o100l
QSE_3 (5 qubits) 30/30/30 0/0/0 0/0/0 0/0/0
programs _ :
Arbitrary QSE2_2 (2 qubits) 30/0/0 0/0/30 0/16/0  0/14/0
o _ . .
Non-Hybrid & Fixed have problems QSE2_3 (3 qubits) 0/0/0 17/0/0 8/0/8  5/30/22
QSE2_4 (4 qubits) 0/0/0 0/0/0 7/0/0  23/30/30
QSE2_5 (5 qubits) 0/0/0 0/0/0 6/0/0  24/30/30
J z JOHANNES KEPLER
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RQ2 - Optimization capabilities?

All approaches can optimize

Optimization capabilities (Hybrid /Non-Hybrid / Fixed).

Hybrid performs (almost) consistently better

(a) RQ2.1 (Perfect Accuracy)

* Hybrid improves by 35% Opimied  Pawobual  Wose Ry
Total | 541/135/105 | 143/84/64 50/10/14 406/911/957
Specific 274/63 45 89/84/64 23/10/14 124/353/387
* Compared to “standard approaCh” (QiSkit Arbitrary 267/72/60 54/0/0 27/0/0 282/558/570
built-in Optimizer): 2 qubits 135/101/90 40/30/30 19/0/0 16/79/90 |
o optimize in significantly more cases Jqubits  248/17/11 371202 o/7/14 66/316/333
° and higher on average 4 qubits 120/6/2 55/32/30 14/3/0 141/289/298
5 qubits 38/11/2 11/2/2 8/0/0 183/227/236 |
J z fjcl?ll;l\?gglslslﬁ'\‘((flrkglq Gemeinhardt, Klikovits, Wimmer 2025 22



RQ3: Hybrid vs. Non-Hybrid vs. Fixed?

* Unclear results
* Hybrid is more diverse (DCI, HV)

* |GD+ indicates that Hybrid is less
performant

J ! JOHANNES KEPLER
UNIVERSITY LINZ

PI Comparison

DCI

HV

IGD™

All

Hybrid vs. Non-Hybrid
Hybrid vs. Fixed
Non-Hybrid vs. Fixed

Repair

Optimize

Hybrid vs. Non-Hybrid
Hybrid vs. Fixed
Non-Hybrid vs. Fixed

Hybrid vs. Non-Hybrid
Hybrid vs. Fixed
Non-Hybrid vs. Fixed

1l

Specific

Arbitrary

Hybrid vs. Non-Hybrid
Hybrid vs. Fixed
Non-Hybrid vs. Fixed

Hybrid vs. Non-Hybrid
Hybrid vs. Fixed
Non-Hybrid vs. Fixed

il 22 e

Gemeinhardt, Klikovits, Wimmer 2025
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RQ4: Search configurations?

(non-exhaustive assessment)

seeding the initial population
- improvements for optimization and debugging

initial population seeding
- most robust configuration wrt. scaling qubits

indication of saturation effects wrt. population size and number of generations

J ! JOHANNES KEPLER
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RQ5 - Hardware-specificity?

Higher levels of hardware specificity improve the results

No hardware considerations performs worst

Using transpiled programs in the search process significantly improves the share of optimized
programs

However, higher levels of hardware-specific considerations increase the execution time.

transpilation of programs for the fitness values only resembles a viable balance between
solution quality and execution time

J ! JOHANNES KEPLER
UNIVERSITY LINZ Gemeinhardt, Klikovits, Wimmer 2025

25



Conclusion & Future Work

SBSE in general is applicable for QSE
sWhat is the best instantiation for QSE?

Hybrid search seems beneficial
=What is the best way to integrate different searchers?

Can be applied on different abstraction levels
»How much do we have to know about the execution?

Seeding makes results more robust for improvement
*How much diversity do we lose?

J z JOHANNES KEPLER
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Ongoing Work

Caching possibilities in search processes

" Reuse similarities within individuals to improve simulation speed

Encoding intuition in search
" E.g. ,my circuit requires entanglement”

Alternative optimization approaches
® Reinforcement learning, ...

Alternative encodings
® Change-based encodings with MOMoT

J z U JOHANNES KEPLER
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Thank you!
Comments? Questions? Feedback?

Looking forward to discussions and collaborations!

Tooling/data available at:
https://qithub.com/iku-win-se/Genetic-Programming-for-Quantum-Operator-Discovery
https://qithub.com/jku-win-se/Qlmprove

JOHANNES KEPLER
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https://github.com/jku-win-se/QImprove

	Slide 1
	Slide 2: GeQuPI:  Quantum Program Improvement with Multi-Objective Genetic Programming
	Slide 3: Quantum Software Team at BISE
	Slide 4: Context & Problem Setting 
	Slide 5: Search-Based Software Engineering
	Slide 6: Typical GP Setup for Quantum Circuits
	Slide 7: Using GP for QSE (1): Synthesis
	Slide 8: Scenario 1 – Operator Synthesis 
	Slide 9: Our Approach: Search Scheme using GP
	Slide 10: Our Approach: Search Scheme using GP
	Slide 11: Experimental Evaluation
	Slide 12: Results
	Slide 14: Using GP for QSE (2): Improvement
	Slide 15: Preliminary: Functionally-equivalent Quantum Programs
	Slide 16: Search Setup Overview
	Slide 17: Search Setup Overview
	Slide 18: Search Setup Overview
	Slide 19: Search Setup Overview
	Slide 20: Evaluation
	Slide 21: RQ1: Debugging capabilities?
	Slide 22: RQ2 – Optimization capabilities?
	Slide 23: RQ3: Hybrid vs. Non-Hybrid vs. Fixed?
	Slide 24: RQ4: Search configurations?
	Slide 25: RQ5 – Hardware-specificity?
	Slide 26: Conclusion & Future Work
	Slide 27: Ongoing Work
	Slide 28
	Slide 29
	Slide 30: GeQuPI:  Quantum Program Improvement with Multi-Objective Genetic Programming
	Slide 31: References
	Slide 32: Contributions

