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Context & Problem Setting 
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Challenges
– Vast design space
– Precision vs. computational cost
– Errors, Probabilistic Nature & NISQ 

Quantum Circuits
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Search-Based Software Engineering

Extensively used for classical software systems for about two decades [Harman et al. 2012]
Goal: Find a software system / program that will optimize a given fitness function
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[Klikovits et al. 2023]
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Advantages:
• Automated exploration by
• Meta-heuristic searchers

Genetic Programming (GP), …

Challenges: Find a good
1. Program encoding
2. Fitness function



Typical GP Setup for Quantum Circuits

6

Encoding: gate vector
[
  H(target=0), 
  CNOT(target=1, control=0)
]

≅ behaviour: accuracy, and 
structure:  # gates, depth, 
    # non-local gates, # parameters

Fitness

use of classical meta-heuristic algorithms: 
GA, NSGA-II, NSGA-III, … 

Algorithms
mutation: add / delete / move / alter / swap gate
 change qubits, …
crossover: one-point, two-point, …
selection: tournament, …

Operators

Is this all we need? 
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Using GP for QSE (1): Synthesis

7

Circuit Synthesis

Operator Synthesis

GP4QSE

[Gemeinhardt et al. 2023]
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Scenario 1 – Operator Synthesis 
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Quantum Operator

GP
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Our Approach: Search Scheme using GP
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Our Approach: Search Scheme using GP
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Problem: Some gates (e.g., RXθ,RYθ, RZθ) require parameters θ ∈ (0, 2π)

Hybrid

Solution: Use Hybrid Search Scheme
– Apply parameter optimizer (Nelder-Mead) inside GP



Experimental Evaluation
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RQ1: Hybrid vs Non-Hybrid - diversity?
RQ2: Hybrid vs Non-Hybrid - accuracy (i.e., overlap)?
RQ3: Hybrid vs Non-Hybrid vs. Analytical Solution?

Selected Case: GM-QAOA [Bärtschi and Eidenbenz 2020]

Meta-heuristic search algorithm: NSGA-III
Implementation: Deap, Qiskit
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Results
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RQ1: better diversity RQ2: Hybrid has higher overlap 
+ faster convergence

Hybrid
Non-Hybrid
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Using GP for QSE (2): Improvement
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Circuit Synthesis

Operator Synthesis

GP4QSE

[Gemeinhardt et al. 2023]

Circuit Improvement

Optimization Debugging
[Gemeinhardt et al. 2025]
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Preliminary: Functionally-equivalent Quantum 
Programs
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Reverse Reference and compare
if Input == Output for specific
input states [Burgholzer et al. 2020]

Extending to arbitrary
input states using Bell-states
[Mohseni et al. 2008]

Reference

Reference
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Search Setup Overview
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Search Setup Overview
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Search Setup Overview
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Search Setup Overview
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Evaluation

• RQ1: Debugging capabilities?

• RQ2: Optimization capabilities?

• 47 quantum programs (from literature and 
open source projects)
◦ 9 for debugging
◦ 38 for optimization

• Setup
◦ Genetic Algorithm: NSGA-III
◦ Hybrid: 150 gen @ 40 pop
◦ Non-Hyb / Fixed: 1600 gen @ 100 pop
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RQ1: Debugging capabilities?

• Hybrid can optimize
◦ for specific input states
◦ with Non-Hybrid & Fixed sometimes only 

equally good solutions are found

• Hybrid can repair arbitrary input-state 
programs
◦ Non-Hybrid & Fixed have problems
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Debugging capabilities: number of runs per category and use case. 
(Hybrid / Non-Hybrid / Fixed).
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RQ2 – Optimization capabilities?

• All approaches can optimize
• Hybrid performs (almost) consistently better

• Hybrid improves by 35%

• Compared to “standard approach” (Qiskit 
built-in optimizer):
◦ optimize in significantly more cases 
◦ and higher on average
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Optimization capabilities (Hybrid / Non-Hybrid / Fixed).
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RQ3: Hybrid vs. Non-Hybrid vs. Fixed?
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• Unclear results
• Hybrid is more diverse (DCI, HV)

• IGD+ indicates that Hybrid is less 
performant

Gemeinhardt, Klikovits, Wimmer 2025



RQ4: Search configurations?
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(non-exhaustive assessment)

seeding the initial population 
 → improvements for optimization and debugging

initial population seeding 
 → most robust configuration wrt. scaling qubits

indication of saturation effects wrt. population size and number of generations
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RQ5 – Hardware-specificity?

Higher levels of hardware specificity improve the results

No hardware considerations performs worst

Using transpiled programs in the search process significantly improves the share of optimized 
programs

However, higher levels of hardware-specific considerations increase the execution time. 

transpilation of programs for the fitness values only resembles a viable balance between 
solution quality and execution time
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Conclusion & Future Work

SBSE in general is applicable for QSE

Hybrid search seems beneficial 

Can be applied on different abstraction levels

Seeding makes results more robust for improvement
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▪What is the best instantiation for QSE?

▪What is the best way to integrate different searchers?

▪How much do we have to know about the execution?

▪How much diversity do we lose?



Ongoing Work

Caching possibilities in search processes
▪ Reuse similarities within individuals to improve simulation speed

Encoding intuition in search
▪ E.g. „my circuit requires entanglement“

Alternative optimization approaches
▪ Reinforcement learning, …

Alternative encodings
▪ Change-based encodings with MOMoT
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Thank you!
Comments? Questions? Feedback?

Looking forward to discussions and collaborations!

Tooling/data available at:
https://github.com/jku-win-se/Genetic-Programming-for-Quantum-Operator-Discovery

https://github.com/jku-win-se/QImprove
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https://github.com/jku-win-se/Genetic-Programming-for-Quantum-Operator-Discovery
https://github.com/jku-win-se/QImprove
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