

F. Gemeinhardt, S. Klikovits, M. Wimmer
a

Institute of Business Informatics – Software Engineering (BISE)

GeQuPI:
Quantum Program Improvement with
Multi-Objective Genetic Programming

2

Quantum Software Team at BISE

3

Research Focus: Automated Quantum Software Engineering
▪ Direction I: Model-Driven Quantum Software Engineering
▪ Direction II: Search-Based Quantum Software Engineering

Stefan KlikovitsFelix Gemeinhardt Christoph Stein

MDESBSE

Manuel Wimmer
(Head)

Gemeinhardt, Klikovits, Wimmer 2025

Context & Problem Setting

4

Challenges
– Vast design space
– Precision vs. computational cost
– Errors, Probabilistic Nature & NISQ

Quantum Circuits

Gemeinhardt, Klikovits, Wimmer 2025

Search-Based Software Engineering

Extensively used for classical software systems for about two decades [Harman et al. 2012]
Goal: Find a software system / program that will optimize a given fitness function

5

[Klikovits et al. 2023]

Gemeinhardt, Klikovits, Wimmer 2025

Advantages:
• Automated exploration by
• Meta-heuristic searchers

Genetic Programming (GP), …

Challenges: Find a good
1. Program encoding
2. Fitness function

Typical GP Setup for Quantum Circuits

6

Encoding: gate vector
[
 H(target=0),
 CNOT(target=1, control=0)
]

≅ behaviour: accuracy, and
structure: # gates, depth,
 # non-local gates, # parameters

Fitness

use of classical meta-heuristic algorithms:
GA, NSGA-II, NSGA-III, …

Algorithms
mutation: add / delete / move / alter / swap gate
 change qubits, …
crossover: one-point, two-point, …
selection: tournament, …

Operators

Is this all we need?
Gemeinhardt, Klikovits, Wimmer 2025

Using GP for QSE (1): Synthesis

7

Circuit Synthesis

Operator Synthesis

GP4QSE

[Gemeinhardt et al. 2023]

Gemeinhardt, Klikovits, Wimmer 2025

Scenario 1 – Operator Synthesis

8

Quantum Operator

GP

Gemeinhardt, Klikovits, Wimmer 2025

Our Approach: Search Scheme using GP

9Gemeinhardt, Klikovits, Wimmer 2025

Our Approach: Search Scheme using GP

10Gemeinhardt, Klikovits, Wimmer 2025

Problem: Some gates (e.g., RXθ,RYθ, RZθ) require parameters θ ∈ (0, 2π)

Hybrid

Solution: Use Hybrid Search Scheme
– Apply parameter optimizer (Nelder-Mead) inside GP

Experimental Evaluation

11

RQ1: Hybrid vs Non-Hybrid - diversity?
RQ2: Hybrid vs Non-Hybrid - accuracy (i.e., overlap)?
RQ3: Hybrid vs Non-Hybrid vs. Analytical Solution?

Selected Case: GM-QAOA [Bärtschi and Eidenbenz 2020]

Meta-heuristic search algorithm: NSGA-III
Implementation: Deap, Qiskit

Gemeinhardt, Klikovits, Wimmer 2025

Results

12

RQ1: better diversity RQ2: Hybrid has higher overlap
+ faster convergence

Hybrid
Non-Hybrid

Gemeinhardt, Klikovits, Wimmer 2025

Using GP for QSE (2): Improvement

14

Circuit Synthesis

Operator Synthesis

GP4QSE

[Gemeinhardt et al. 2023]

Circuit Improvement

Optimization Debugging
[Gemeinhardt et al. 2025]

Gemeinhardt, Klikovits, Wimmer 2025

Preliminary: Functionally-equivalent Quantum
Programs

15

Reverse Reference and compare
if Input == Output for specific
input states [Burgholzer et al. 2020]

Extending to arbitrary
input states using Bell-states
[Mohseni et al. 2008]

Reference

Reference

Gemeinhardt, Klikovits, Wimmer 2025

Search Setup Overview

16Gemeinhardt, Klikovits, Wimmer 2025

Search Setup Overview

17Gemeinhardt, Klikovits, Wimmer 2025

Search Setup Overview

18Gemeinhardt, Klikovits, Wimmer 2025

Search Setup Overview

19Gemeinhardt, Klikovits, Wimmer 2025

Evaluation

• RQ1: Debugging capabilities?

• RQ2: Optimization capabilities?

• 47 quantum programs (from literature and
open source projects)
◦ 9 for debugging
◦ 38 for optimization

• Setup
◦ Genetic Algorithm: NSGA-III
◦ Hybrid: 150 gen @ 40 pop
◦ Non-Hyb / Fixed: 1600 gen @ 100 pop

20Gemeinhardt, Klikovits, Wimmer 2025

RQ1: Debugging capabilities?

• Hybrid can optimize
◦ for specific input states
◦ with Non-Hybrid & Fixed sometimes only

equally good solutions are found

• Hybrid can repair arbitrary input-state
programs
◦ Non-Hybrid & Fixed have problems

21

Debugging capabilities: number of runs per category and use case.
(Hybrid / Non-Hybrid / Fixed).

Gemeinhardt, Klikovits, Wimmer 2025

RQ2 – Optimization capabilities?

• All approaches can optimize
• Hybrid performs (almost) consistently better

• Hybrid improves by 35%

• Compared to “standard approach” (Qiskit
built-in optimizer):
◦ optimize in significantly more cases
◦ and higher on average

22

Optimization capabilities (Hybrid / Non-Hybrid / Fixed).

Gemeinhardt, Klikovits, Wimmer 2025

RQ3: Hybrid vs. Non-Hybrid vs. Fixed?

23

• Unclear results
• Hybrid is more diverse (DCI, HV)

• IGD+ indicates that Hybrid is less
performant

Gemeinhardt, Klikovits, Wimmer 2025

RQ4: Search configurations?

24

(non-exhaustive assessment)

seeding the initial population
 → improvements for optimization and debugging

initial population seeding
 → most robust configuration wrt. scaling qubits

indication of saturation effects wrt. population size and number of generations

Gemeinhardt, Klikovits, Wimmer 2025

RQ5 – Hardware-specificity?

Higher levels of hardware specificity improve the results

No hardware considerations performs worst

Using transpiled programs in the search process significantly improves the share of optimized
programs

However, higher levels of hardware-specific considerations increase the execution time.

transpilation of programs for the fitness values only resembles a viable balance between
solution quality and execution time

25Gemeinhardt, Klikovits, Wimmer 2025

Conclusion & Future Work

SBSE in general is applicable for QSE

Hybrid search seems beneficial

Can be applied on different abstraction levels

Seeding makes results more robust for improvement

26Gemeinhardt, Klikovits, Wimmer 2025

▪What is the best instantiation for QSE?

▪What is the best way to integrate different searchers?

▪How much do we have to know about the execution?

▪How much diversity do we lose?

Ongoing Work

Caching possibilities in search processes
▪ Reuse similarities within individuals to improve simulation speed

Encoding intuition in search
▪ E.g. „my circuit requires entanglement“

Alternative optimization approaches
▪ Reinforcement learning, …

Alternative encodings
▪ Change-based encodings with MOMoT

27Gemeinhardt, Klikovits, Wimmer 2025

29

Thank you!
Comments? Questions? Feedback?

Looking forward to discussions and collaborations!

Tooling/data available at:
https://github.com/jku-win-se/Genetic-Programming-for-Quantum-Operator-Discovery

https://github.com/jku-win-se/QImprove

Gemeinhardt, Klikovits, Wimmer 2025

https://github.com/jku-win-se/Genetic-Programming-for-Quantum-Operator-Discovery
https://github.com/jku-win-se/QImprove

	Slide 1
	Slide 2: GeQuPI: Quantum Program Improvement with Multi-Objective Genetic Programming
	Slide 3: Quantum Software Team at BISE
	Slide 4: Context & Problem Setting
	Slide 5: Search-Based Software Engineering
	Slide 6: Typical GP Setup for Quantum Circuits
	Slide 7: Using GP for QSE (1): Synthesis
	Slide 8: Scenario 1 – Operator Synthesis
	Slide 9: Our Approach: Search Scheme using GP
	Slide 10: Our Approach: Search Scheme using GP
	Slide 11: Experimental Evaluation
	Slide 12: Results
	Slide 14: Using GP for QSE (2): Improvement
	Slide 15: Preliminary: Functionally-equivalent Quantum Programs
	Slide 16: Search Setup Overview
	Slide 17: Search Setup Overview
	Slide 18: Search Setup Overview
	Slide 19: Search Setup Overview
	Slide 20: Evaluation
	Slide 21: RQ1: Debugging capabilities?
	Slide 22: RQ2 – Optimization capabilities?
	Slide 23: RQ3: Hybrid vs. Non-Hybrid vs. Fixed?
	Slide 24: RQ4: Search configurations?
	Slide 25: RQ5 – Hardware-specificity?
	Slide 26: Conclusion & Future Work
	Slide 27: Ongoing Work
	Slide 28
	Slide 29
	Slide 30: GeQuPI: Quantum Program Improvement with Multi-Objective Genetic Programming
	Slide 31: References
	Slide 32: Contributions

