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Many-Body Localized Discrete Time Crystals
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® Non-equilibrium phase of matter characterized by a spontaneous breaking of discrete time-translation
symmetry, resulting in a subharmonic response that spontaneously breaks the periodicity of an external drive

B Despite significant interest, the existence of MBL-DTCs remains an open question due fo the potential
instability of the underlying MBL phase

A more complete discussion in the paper ...
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Analysis of Quantum Circuits

QSE Challenge

Circuit developers want to design circuits that stay
within correct sub-space

B Reasoning non-trivial, requires deep insight
info mechanics of quantum program and
underlying theory

B Showing bounds would reduce need for full
quantum simulation

® But: No methods to proof that a circuit stays
within sub-space, yet
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m But: No methods to proof that a circuit stays
within sub-space, yet
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Idea for a Solution

Adapt and scale symbolic verification techniques
to quantum circuits

m Today’s quantum software formulated as
circuits

m Automated Reasoning and symbolic
techniques had big impact in (classic)
hardware verification

B After hardware: big impact on software (e.g.
driver verification at MicroSoft)
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Outline

B Logic-based analysis of quantum circuits and challenges
m Tactics for scaling verification

| |nifial results
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Program Analysis

Program P
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Program
. E—
Analysis
Property ¢ © doesn’t hold for P
+ Counterexample
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Program Analysis

if (x>0) {
z := 0;
} else { Program P
z :=1;
¥ Program
’ Y
Analysis
If P terminates, T — T
then z > 0 after Property ¢ ¢ doesn’t hold for P
termination. + Counterexample
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Program Analysis

if (x>0) {
z :=0;
} else {
>
z :=1;
¥ Program
’ N
Analysis
If P terminates, _— —
then z > 0 after ¢ doesn’t hold for P
termination. + Counterexample

Many different fechniques exist. Here: Encoding as SMT problem P A —:

if (x>0) { ((z >0—=2 =0)A
z := 0;
} else { —— (z§0—>z,:1))/\ _— SMT —
3 g iy Solver —— SAT
} (z' < 0) Model = counterexample
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Program Analysis

o p—o Quantum
Circuit C
>
D—o Program
i —
Analysis
Forinputs [0) and [0) ——— —_—
|4) in space Property ¢ ¢ doesn’t hold for C
|00), |11) aofter C + Counterexample
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Program Analysis
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Forinputs |0) and |0)

|4} in space Property ¢

Program
Analysis
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¢ doesn’t hold for C'
+ Counterexample

|00), [11) after C

Different fechniques exist. Here: Encoding as SMT problem C' A —¢:

o
I

Logic-based encoding
S of circuit C and
property ¢

o—ca—c
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SMT A

Solver ——— SAT
Model = counterexample
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Logic-Based Encoding of Quantum Circuits

|0) o — in space ) == €00/|00) 4 co1]01) + c10]10) + c11|11)
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{P} c {«}

Cf. Bauer-Marquart et al., FM 2023
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Logic-Based Encoding of Quantum Circuits
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Cf. Bauer-Marquart et al., FM 2023
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Logic-Based Encoding of Quantum Circuits
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Challenges

m Size of logic encoding exponential in number of qubits

B k-qubit state described by 2¢ complex coefficients

B 2" complex coefficients can be modeled by 2+ real coefficients and nonlinear real arithmetic

Different from challenges in classic program verification: loops, function calls, memory allocation, concurrency
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Challenges

m Size of logic encoding exponential in number of qubits

B k-qubit state described by 2¢ complex coefficients

B 2" complex coefficients can be modeled by 2+ real coefficients and nonlinear real arithmetic

B Some gate effects are described by elementary functions
B Rotations are described by trigonometric functions

B Hadamard is described using v/2

Different from challenges in classic program verification: loops, function calls, memory allocation, concurrency
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Two tactics for scaling verification:

and
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A Slightly Bigger Example: H(2°)

INENEE]

H(26)

TTTTTT

{Ry (+7/9 p—{Ry (+2/4) e Ry (=m/4) }

{Ry (+7/4) B—{Ry (=2/4) o—{Ry (—/4) |

Structure: Properties:
B 6 qubits = 64 complex coefficients = 128 reall m [7(25) preserves expected Hamming weight

state variables m H(4) preserves expected Hamming weight
® Hierarchical composition of 10 H(4) circuits
® Each H(4): 6 rotations and 2 CZ gates
m Rotations parameterized by A HW[$in] = HW [$our]

27 —1

W(lg)) =D w(i)- el
Example from Anselmetti et al., New Journal of Physics, 2021 i=0
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Tactic 1: Decomposition

Compositional Verification

B C sequential composition of sub-circuits
Ci,...,Ch.

B Local properties Ay, ..., A, such that
B C,EA;forl1 <i<n,and

B A AN ANA, E .

B Schema establishes C1 A ... ACh E ¢

(In the paper we show a compositional verification scheme for pre- and post-conditions)
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Compositional Verification

B C sequential composition of sub-circuits

C1,y...,Ch.
® Local properties Ay, ..., Ay, such that For1 <4< 10
B C,EA;forl1 <i<n,and ;= H¢(4)
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Tactic 1: Decomposition

Compositional Verification

B C sequential composition of sub-circuits

C1,y...,Ch.
® Local properties Ay, ..., A, such that For1 <i <10
B C;, = A;forl <i<n,and B C,:=H;(4)
B AN AA, o B A :=HWtp—1] = HW[y);]
B Schema establishes Cy A ... ACy = @ B Hi(4) F HW[pi—1] = HW[y;]
B A\ HW[W; 1] = HW[y] | HWliho] = HW[410]

Establishes H;(2%) = HW[yo] = HW([t10]

(In the paper we show a compositional verification scheme for pre- and post-conditions)
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Leveraging Additional Lemmata

In the n-qubit system, the total expected Hamming weight can be written as:

1— Zy 1-2; 1-2;
3 [v) + (¥ 5t 5 )

HW[S] = ) (]

k#i,j

As a result, it suffices to proof H;(4) = HW[¢Yin] = HW[Yout] ON O 2-qubit state
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Tactic 2: Abstraction and Over-Approximation

m (Precise) Abstraction

B Summarize effect of multiple gates in simplified
form

B Proof obligation: simplified form equivalent to
concrete representation

m Over-Approximation

B Replace complex representation by
over-approximation

B May produce spurious counterexamples
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Tactic 2: Abstraction and Over-Approximation

L (+7/4) Ry (+A/4)
Y (+7/4) Ry(—X/4)

m (Precise) Abstraction

B Summarize effect of multiple gates in simplified
form

B Proof obligation: simplified form equivalent to
concrete representation

m Over-Approximation

B Replace complex representation by
over-approximation

B May produce spurious counterexamples

/9 }

Ry
Ry

/9 }

Abstraction:
1 0 0
10 c +s
H(4) = 0 -s c
0 0 0
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Tactic 2: Abstraction and Over-Approximation

m (Precise) Abstraction

B Summarize effect of multiple gates in simplified

form

B Proof obligation: simplified form equivalent to

concrete representation

m Over-Approximation

B Replace complex representation by
over-approximation

B May produce spurious counterexamples
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{Ry (+7/4) Fo—{Ry (+3/4) 4Ry (=m/4) }
{Ry (+7/4) Ry (=3/4) —{Ry (=/4) }
Abstraction:
1 0 0 0
0 c +s 0
H(4) = s ¢ ¢ = cos(N\/2)
O N ()

Over-Approximation:

We only require that 0 < s,¢ < 1 and that
s24+c2=1
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Initial Results

WCT for Growing Circut Size H(2°)

I 1 Example Encoding Analysis
sk | Vars Ass. Logic Res. wct [s]
g | | H+CNOT 25 26 LRAT v 0.005
E H+CNOT, C1 17 11 LRAT v 0.005
R H+CNOT, C2 17 11 LRAT v 0.003
of o . | H+CNOT, P+A1 9 3 LRAT v 0.004
H(2%). naive 10370 5101 RIC , DNS
fesanments H(29), precise 3330 1671  TRIG - DNS
L H(26) 1412 647 NRA  d/k DNF
Results for examples in slides: H(26Y,9/10 1284 583 NRA v 825
m Techniques work H(26),8/10 1186 519 NRA v 2.29
H(2%).7/10 1028 . 455 NRA v 1.59
m Do not increase efficiency on H+CNOT H(2%).5/10 772 . 327 NRA v 0.23
e H(2%),1/10 260 71 NRA v 0.02
® Enable verification for H(26) Hd) 20 15 NRA 7 001
B Projection to 2-qubit state increases efficiency by

order of magnitude

1: over-approximated 1/+4/2, DNS: did not attempt to solve, DNF: timeout after 30 min
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Summary, Open Questions, and Future Work

Summary: Initial Results:
B Logic-based verification for quantum circuits B Techniques applicable fo studied circuits
with hierarchical structure m Technigues increase performance significantly

m Scalability through compositional verification,
abstraction, and over-approximation
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Summary, Open Questions, and Future Work

Summary:

B |ogic-based verification for quantum circuits
with hierarchical structure

m Scalability through compositional verification,
abstraction, and over-approximation

Open Questions (Decomposition):

® Can we automate generation of
assumptions?
m Can we generate useful decompositions from

B hierarchical circuit design,
B static analysis (e.g. clone detection),
B datfa flow analysis?
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Initial Results:

B Techniques applicable to studied circuits
B Techniques increase performance significantly

Open Questions (Scalability):

m Can the approach be automated or will it
have to be interactive?

B Potential of abstraction and
over-approximation?

® More lemmmata that enable projection to
sub-circuits?
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Compositional Verification for H-CNOT Example

Compositional Argument:

Schema for pre- and post-conditions:

P':A1
Al/\H':Ag

As NACNOT = Q
PAHACNOT EQ

Over-Approximation:

Use ¢ and assumption ¢ # 0
instead of v/2
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Pi=(cfp=1) A (c§; =0) A (c)p=0) A (], =0)

1 1
A= (—=(S8;+ ) =0) A &S, —d)=0
1 (\/5(01 1) =0) (\/5(01 1) =0)
1 1
H:=(ch, = —=(2, + I )) A (cd; = — (9 + 2 )A
(co0 \/5( 00 10)) A (co1 \/5( 01 11))
1 1

(381 - 0(1)1))

(cio = \/5(080 =) Alel; =

5

Az := (¢4 = 0) A(c}; = 0)

ONOT := (o = cfo) A (¢ = ctn) A (o = c11) A (€f = eio)
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