Bounds for Quantum Circuits using Logic-Based Analysis

Benedikt Fauseweh, Ben Hermann, and Falk Howar

TU Dortmund University

Feb 24, 2025

Benedikt Fauseweh, Ben Hermann, and Falk Howar Bounds for Quantum Circuits using Logic-Based Analysis

Many-Body Localized Discrete Time Crystals

- Non-equilibrium phase of matter characterized by a spontaneous breaking of discrete time-translation symmetry, resulting in a subharmonic response that spontaneously breaks the periodicity of an external drive
- Despite significant interest, the existence of MBL-DTCs remains an open question due to the potential instability of the underlying MBL phase

A more complete discussion in the paper ...

Analysis of Quantum Circuits

QSE Challenge

Circuit developers want to design circuits that stay within correct sub-space

- Reasoning non-trivial, requires deep insight into mechanics of quantum program and underlying theory
- Showing bounds would reduce need for full quantum simulation
- But: No methods to proof that a circuit stays within sub-space, yet

Analysis of Quantum Circuits

QSE Challenge

Circuit developers want to design circuits that stay within correct sub-space

- Reasoning non-trivial, requires deep insight into mechanics of quantum program and underlying theory
- Showing bounds would reduce need for full quantum simulation
- But: No methods to proof that a circuit stays within sub-space, yet

Idea for a Solution

Adapt and **scale** symbolic verification techniques to quantum circuits

- Today's quantum software formulated as circuits
- Automated Reasoning and symbolic techniques had big impact in (classic) hardware verification
- After hardware: big impact on software (e.g. driver verification at MicroSoft)

Outline

- Logic-based analysis of quantum circuits and challenges
- Tactics for scaling verification
- Initial results

$$|\psi\rangle := \mathbf{c_{00}}|00\rangle + \mathbf{c_{01}}|01\rangle + \mathbf{c_{10}}|10\rangle + \mathbf{c_{11}}|11\rangle$$

Cf. Bauer-Marquart et al., FM 2023

Benedikt Fauseweh, Ben Hermann, and Faik Howar

$$|\psi\rangle := \mathbf{c_{00}}|00\rangle + \mathbf{c_{01}}|01\rangle + \mathbf{c_{10}}|10\rangle + \mathbf{c_{11}}|11\rangle$$

Cf. Bauer-Marquart et al., FM 2023

Benedikt Fauseweh, Ben Hermann, and Falk Howar

$$|\psi\rangle := \mathbf{c_{00}}|00\rangle + \mathbf{c_{01}}|01\rangle + \mathbf{c_{10}}|10\rangle + \mathbf{c_{11}}|11\rangle$$

$$P := (\mathbf{c_{00}^0} = 1) \ \land \ (\mathbf{c_{01}^0} = 0) \ \land \ (\mathbf{c_{10}^0} = 0) \ \land \ (\mathbf{c_{11}^0} = 0)$$

Cf. Bauer-Marquart et al., FM 2023

Benedikt Fauseweh, Ben Hermann, and Falk Howar

$$|\psi\rangle \ := \ \mathbf{c_{00}}|00\rangle + \mathbf{c_{01}}|01\rangle + \mathbf{c_{10}}|10\rangle + \mathbf{c_{11}}|11\rangle$$

$$P := (\mathbf{c_{00}^0} = 1) \land (\mathbf{c_{01}^0} = 0) \land (\mathbf{c_{10}^0} = 0) \land (\mathbf{c_{11}^0} = 0)$$
$$C := (\mathbf{c_{00}^2} = \mathbf{c_{00}^1}) \land (\mathbf{c_{10}^1} = \frac{1}{\sqrt{2}}(\mathbf{c_{00}^0} + \mathbf{c_{10}^0})) \land$$
$$(\mathbf{c_{01}^2} = \mathbf{c_{01}^1}) \land (\mathbf{c_{01}^1} = \frac{1}{\sqrt{2}}(\mathbf{c_{01}^0} + \mathbf{c_{11}^0})) \land$$

$$\begin{aligned} (\mathbf{c_{10}^2} = \mathbf{c_{11}^1}) \ \land \ (\mathbf{c_{10}^1} = \frac{1}{\sqrt{2}} (\mathbf{c_{00}^0} - \mathbf{c_{10}^0})) \ \land \\ (\mathbf{c_{11}^2} = \mathbf{c_{10}^1}) \ \land \ (\mathbf{c_{11}^1} = \frac{1}{\sqrt{2}} (\mathbf{c_{01}^0} - \mathbf{c_{11}^0})) \end{aligned}$$

Cf. Bauer-Marquart et al., FM 2023

Benedikt Fauseweh, Ben Hermann, and Falk Howar

$$|\psi\rangle \ := \ \mathbf{c_{00}}|00\rangle + \mathbf{c_{01}}|01\rangle + \mathbf{c_{10}}|10\rangle + \mathbf{c_{11}}|11\rangle$$

$$P := (\mathbf{c_{00}^0} = 1) \land (\mathbf{c_{01}^0} = 0) \land (\mathbf{c_{10}^0} = 0) \land (\mathbf{c_{11}^0} = 0)$$

$$\begin{split} &:= (\mathbf{c_{00}^2} = \mathbf{c_{00}^1}) \ \land \ (\mathbf{c_{00}^1} = \frac{1}{\sqrt{2}} (\mathbf{c_{00}^0} + \mathbf{c_{10}^0})) \land \\ &(\mathbf{c_{01}^2} = \mathbf{c_{01}^1}) \ \land \ (\mathbf{c_{01}^1} = \frac{1}{\sqrt{2}} (\mathbf{c_{01}^0} + \mathbf{c_{11}^0})) \land \\ &(\mathbf{c_{10}^2} = \mathbf{c_{11}^1}) \ \land \ (\mathbf{c_{10}^1} = \frac{1}{\sqrt{2}} (\mathbf{c_{00}^0} - \mathbf{c_{10}^0})) \ \land \\ &(\mathbf{c_{11}^2} = \mathbf{c_{10}^1}) \ \land \ (\mathbf{c_{11}^1} = \frac{1}{\sqrt{2}} (\mathbf{c_{01}^0} - \mathbf{c_{11}^0})) \end{split}$$

$$Q := (\mathbf{c_{01}^2} = 0) \land \ (\mathbf{c_{10}^2} = 0)$$

Cf. Bauer-Marquart et al., FM 2023

Benedikt Fauseweh, Ben Hermann, and Falk Howar

C

Challenges

Size of logic encoding exponential in number of qubits

- *k*-qubit state described by 2^k **complex** coefficients
- 2^k complex coefficients can be modeled by 2^{k+1} real coefficients and nonlinear real arithmetic

Different from challenges in classic program verification: loops, function calls, memory allocation, concurrency

Challenges

Size of logic encoding exponential in number of qubits

- *k*-qubit state described by 2^k **complex** coefficients
- 2^k complex coefficients can be modeled by 2^{k+1} real coefficients and nonlinear real arithmetic

Some gate effects are described by elementary functions

- Rotations are described by trigonometric functions
- Hadamard is described using $\sqrt{2}$

Different from challenges in classic program verification: loops, function calls, memory allocation, concurrency

Two tactics for scaling verification:

decomposition and abstraction / over-approximation

A Slightly Bigger Example: $H(2^6)$

Structure:

- 6 qubits = 64 complex coefficients = 128 real state variables
- Hierarchical composition of 10 H(4) circuits
- Each *H*(4): 6 rotations and 2 CZ gates
- Rotations parameterized by

Properties:

- $H(2^6)$ preserves expected Hamming weight
- H(4) preserves expected Hamming weight

$$\mathrm{HW}[\psi_{in}] = \mathrm{HW}[\psi_{out}]$$

$$\mathrm{HW}(|\psi\rangle) = \sum_{i=0}^{2^n - 1} w(i) \cdot |c_i|^2$$

Example from Anselmetti et al., New Journal of Physics, 2021

Compositional Verification

- C sequential composition of sub-circuits C_1, \ldots, C_n .
- Local properties A_1, \ldots, A_n such that
 - $C_i \models A_i$ for $1 \le i < n$, and
 - $A_1 \wedge \ldots \wedge A_n \models \varphi.$
- Schema establishes $C_1 \land \ldots \land C_n \models \varphi$

Compositional Verification

- C sequential composition of sub-circuits C_1, \ldots, C_n .
- Local properties A_1, \ldots, A_n such that
 - $C_i \models A_i$ for $1 \le i < n$, and
 - $A_1 \wedge \ldots \wedge A_n \models \varphi.$
- Schema establishes $C_1 \land \ldots \land C_n \models \varphi$

Compositional Verification

- C sequential composition of sub-circuits C_1, \ldots, C_n .
- Local properties A_1, \ldots, A_n such that
 - $C_i \models A_i$ for $1 \le i < n$, and
 - $A_1 \wedge \ldots \wedge A_n \models \varphi.$
- Schema establishes $C_1 \land \ldots \land C_n \models \varphi$

For $1 \leq i \leq 10$:

•
$$C_i := H_i(4)$$

• $A_i := \operatorname{HW}[\psi_{i-1}] = \operatorname{HW}[\psi_i]$

Compositional Verification

- C sequential composition of sub-circuits C_1, \ldots, C_n .
- Local properties A_1, \ldots, A_n such that
 - $C_i \models A_i$ for $1 \le i < n$, and
 - $A_1 \wedge \ldots \wedge A_n \models \varphi.$
- Schema establishes $C_1 \land \ldots \land C_n \models \varphi$

For $1 \leq i \leq 10$:

- $\bullet C_i := H_i(4)$
- $A_i := \operatorname{HW}[\psi_{i-1}] = \operatorname{HW}[\psi_i]$

•
$$H_i(4) \models \operatorname{HW}[\psi_{i-1}] = \operatorname{HW}[\psi_i]$$

• $\bigwedge_i \operatorname{HW}[\psi_{i-1}] = \operatorname{HW}[\psi_i] \models \operatorname{HW}[\psi_0] = \operatorname{HW}[\psi_{10}]$

Compositional Verification

- C sequential composition of sub-circuits C_1, \ldots, C_n .
- Local properties A_1, \ldots, A_n such that
 - $C_i \models A_i$ for $1 \le i < n$, and
 - $A_1 \wedge \ldots \wedge A_n \models \varphi.$
- Schema establishes $C_1 \land \ldots \land C_n \models \varphi$

For $1 \leq i \leq 10$:

- $\bullet C_i := H_i(4)$
- $\bullet A_i := \mathrm{HW}[\psi_{i-1}] = \mathrm{HW}[\psi_i]$

•
$$H_i(4) \models \operatorname{HW}[\psi_{i-1}] = \operatorname{HW}[\psi_i]$$

• $\bigwedge_{i} \operatorname{HW}[\psi_{i-1}] = \operatorname{HW}[\psi_{i}] \models \operatorname{HW}[\psi_{0}] = \operatorname{HW}[\psi_{10}]$

Establishes $H_i(2^6) \models HW[\psi_0] = HW[\psi_{10}]$

Leveraging Additional Lemmata

In the *n*-qubit system, the total expected Hamming weight can be written as:

$$\mathrm{HW}[\psi] \ := \ \sum_{k \neq i,j} \langle \psi | \frac{1 - Z_k}{2} | \psi \rangle + \langle \psi | \frac{1 - Z_i}{2} + \frac{1 - Z_j}{2} | \psi \rangle$$

As a result, it suffices to proof $H_i(4) \models HW[\psi_{in}] = HW[\psi_{out}]$ on a 2-qubit state

(Precise) Abstraction

- Summarize effect of multiple gates in simplified form
- Proof obligation: simplified form equivalent to concrete representation

Over-Approximation

- Replace complex representation by over-approximation
- May produce spurious counterexamples

(Precise) Abstraction

- Summarize effect of multiple gates in simplified form
- Proof obligation: simplified form equivalent to concrete representation

Over-Approximation

- Replace complex representation by over-approximation
- May produce spurious counterexamples

(Precise) Abstraction

- Summarize effect of multiple gates in simplified form
- Proof obligation: simplified form equivalent to concrete representation

Over-Approximation

- Replace complex representation by over-approximation
- May produce spurious counterexamples

Abstraction:

$$H(4) = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & c & +s & 0\\ 0 & -s & c & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{for } \begin{array}{c} c := \cos(\lambda/2)\\ s := \sin(\lambda/2) \end{array}$$

(Precise) Abstraction

- Summarize effect of multiple gates in simplified form
- Proof obligation: simplified form equivalent to concrete representation

Over-Approximation

- Replace complex representation by over-approximation
- May produce spurious counterexamples

Abstraction:

 $\mathsf{R}_{y}(+\pi/4)$

 $\mathsf{R}_u(+\pi/4)$

$$H(4) = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & c & +s & 0\\ 0 & -s & c & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{for } \begin{array}{c} c := \cos(\lambda/2)\\ s := \sin(\lambda/2) \end{array}$$

 $R_u(+\lambda/4)$

 $\mathsf{R}_u(-\lambda/4)$

 $\mathsf{R}_u(-\pi/4)$

 $\mathsf{R}_{y}(-\pi/4)$

Over-Approximation:

We only require that $0 \le s, c \le 1$ and that $s^2 + c^2 = 1$

Initial Results

Results for examples in slides:

- Techniques work
- Do not increase efficiency on H+CNOT
- Enable verification for $H(2^6)$
- Projection to 2-qubit state increases efficiency by order of magnitude

Example		Encoding		A	Analysis	
	Vars	Ass.	Logic	Res.	wct [s]	
H+CNOT	25	26	LRA^{\dagger}	\checkmark	0.005	
H+CNOT, C1	17	11	LRA [†]	\checkmark	0.005	
H+CNOT, C2	17	11	LRA [†]	\checkmark	0.003	
H+CNOT, P+A1	9	3	LRA^{\dagger}	\checkmark	0.004	
$H(2^6)$, naive	10370	5 191	TRIG	-	DNS	
$H(2^6)$, precise	3 330	1671	TRIG	-	DNS	
$H(2^{6})$	1412	647	NRA	d/k	DNF	
H(2 ⁶), 9/10	1 284	583	NRA	\checkmark	8.25	
H(2 ⁶), 8/10	1 156	519	NRA	\checkmark	2.29	
$H(2^{6}), 7/10$	1028	. 455	NRA	\checkmark	1.59	
H(2 ⁶), 5/10	772	. 327	NRA	\checkmark	0.23	
H(2 ⁶), 1/10	260	71	NRA	\checkmark	0.02	
H(4)	20	15	NRA	\checkmark	0.01	

†: over-approximated $1/\sqrt{2}$, **DNS**: did not attempt to solve, **DNF**: timeout after 30 min

Summary, Open Questions, and Future Work

Summary:

- Logic-based verification for quantum circuits with hierarchical structure
- Scalability through compositional verification, abstraction, and over-approximation

Initial Results:

- Techniques applicable to studied circuits
- Techniques increase performance significantly

Summary, Open Questions, and Future Work

Summary:

- Logic-based verification for quantum circuits with hierarchical structure
- Scalability through compositional verification, abstraction, and over-approximation

Open Questions (Decomposition):

- Can we automate generation of assumptions?
- Can we generate useful decompositions from
 - hierarchical circuit design,
 - static analysis (e.g. clone detection),
 - data flow analysis?

Initial Results:

- Techniques applicable to studied circuits
- Techniques increase performance significantly

Open Questions (Scalability):

- Can the approach be automated or will it have to be interactive?
- Potential of abstraction and over-approximation?
- More lemmata that enable projection to sub-circuits?

Compositional Verification for H-CNOT Example

$$P:=(c_{00}^0=1)\ \wedge\ (c_{01}^0=0)\ \wedge\ (c_{10}^0=0)\ \wedge\ (c_{11}^0=0)$$

Compositional Argument:

Schema for pre- and post-conditions:

$$P \models A_1$$

$$A_1 \land H \models A_2$$

$$A_2 \land CNOT \models Q$$

$$\mathbf{P} \land \mathbf{H} \land \mathbf{CNOT} \models \mathbf{Q}$$

$$A_{1} := \left(\frac{1}{\sqrt{2}}(c_{01}^{0} + c_{11}^{0}) = 0\right) \land \left(\frac{1}{\sqrt{2}}(c_{01}^{0} - c_{11}^{0}) = 0\right)$$
$$H := \left(c_{00}^{1} = \frac{1}{\sqrt{2}}(c_{00}^{0} + c_{10}^{0})\right) \land \left(c_{01}^{1} = \frac{1}{\sqrt{2}}(c_{01}^{0} + c_{11}^{0})\right) \land$$
$$\left(c_{10}^{1} = \frac{1}{\sqrt{2}}(c_{00}^{0} - c_{10}^{0})\right) \land \left(c_{11}^{1} = \frac{1}{\sqrt{2}}(c_{01}^{0} - c_{11}^{0})\right)$$

Over-Approximation:

Use c and assumption $c \neq 0$ instead of $\sqrt{2}$

$$A_2 := (c_{01}^1 = 0) \land (c_{11}^1 = 0)$$

CNOT := $(c_{00}^2 = c_{00}^1) \land (c_{01}^2 = c_{01}^1) \land (c_{10}^2 = c_{11}^1) \land (c_{11}^2 = c_{10}^1)$

$$Q := (c_{01}^2 = 0) \land (c_{10}^2 = 0)$$