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 Background & Motivation

e Unified Quantum Platform

* Novel Quantum Control Processor
* Evaluation

* Conclusion & Future Work
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The Munich Quantum Valley: Full-Stack QC Systems

Three technologies; One stack
= Superconducting Qubits
= Neutral-atom Qubits

=  Trapped-ion Qubits Sottiuare ans

theory,
~ Programming (o] of
hngu jes complexity

Seven Consortia/Coordinated Projects
= Seven core partners

= Several associated projects with
different funding organizations (Germany, e

Qubit interconnects, Quantum control

Platform,
topologies,
micro-architecture System engineering

E U, . ) QC platforms

= Plus Industrial Partners, Startups, and
Lighthouse Projects K1 K3/2

= Educational components

Qubit Platforms, gate technologies Hardware
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The HPCQC Workflow
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Unified Toolchain Back-End
Analysis, Classical HW-Dependent

Unified Toolchain Middle-End
Analysis, Hybrid HW-Agnostic Optimization
L and Transformations
Optimized Hybrid IR &
l Metadata l
' N

Optimization, Code Generation and Linking )
\

S

- - e e e e e e e M e e e e

HPC Compute Nodes In Parallel

(Allocated Resources)

HPC Compute Node

- HW: CPUs, Classical
Accelerators & Memory.

- SW: Communication,
Sync. (e.g. MPI), On-Node
Parallelism (e.g. OMP) &
Offloading.
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HPCQC Compute Nodes

Jdouogdgn

HPCQC Compute Node

- HW: Classical & Quantum Resources.

- SW: Transpilation (i.e. Analysis, Hardware-
Specific Optimization, Mapping & Routing)

- Execution: Q. Circuit Offloading & Interfacing
with The QPU (Different Levels of Interactions)
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1 1
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. Workload Manager : . Workload Manager :
1 Queuing, Scheduling (Resource Allocation: | 1 Queuing, Scheduling (Resource Allocation: '
1 CPUs, GPUs, FPGAs, TPUs, Memory & 1 1 QPUs & Hybrid HPCQC Nodes), Dispatching, 1
1 Storage), Dispatching, Orchestration & ! ! Orchestration & Monitoring 1
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v U Monitoring ) v L )
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1 N ! 1 AL
! Environment Module Package ! ! Environment Module Package !
: Build/Execution Environment Setup : : Build/Execution Environment Setup :
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HPCQC Integration

SW-Level View

= Design of programming models
= Execution Schedulers

= Runtime Environments

= Seamless Integration

HW-Level View

(a) Loose Integration — Standalone
(b) Loose Integration — Co-located
(c) Tight Integration — Co-located
(d) Tight Integration — On-node.
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Challenges on the Optimal Way

Cross-Technology Control

Each existing backends only supports specific physical modality
- Demand an individual compiler for each backend controller

Communication Overhead for Conditional Logics

= Hybrid algorithms need large amount of communications between quantum and classical
processors

= Mid-circuit measurement & Feedforward logic
= Eat away quantum advantages
= Worse case: Exceeds coherence time

Unified platform (Software environment & Control Processor)
to dampen the overhead and achieve cross-technology control
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Targeting Layers
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Quantum Algorithm
Software Quantum Programming Language
Stack 5 & Lansuas

Quantum Compilation Toolchain j Executable

Quantum Quantum Instruction Set Architecture Instructions
Control
Processor Microarchitecture _
| Operations
Interface Signal Generation and Readout Device
. . | Pulses

Backend Quantum Processing Unit (QPU)
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Unified Quantum Platform — Overview

______________________________________________________

_____________________________________________________
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_____________________________________________________

Runtime Environment (RT) ! - RT— 1 R o RT—2 R - RT—3 R Unified Runtime Environment
Interface: Instruction Set Architecture (ISA) | ISA-1 ISA-2 ISA-3 : Unified Instruction Set Architecture
\ : ( s :
Quantum Control Processor (QCP) ! ! B QCP-l i - QCP-Z i B Qcp_g o T uQcp uQcp - uqQcp
Arbitrary Wave Generator (AWG) E - AWG _______ AWG _______ A W(} o i o AWG _______ AWG _______ A WG o
Quantum Lt - ‘ i G e G
v | EBHGEoE | || W | SR £
""""""""""""""""""""""""""" ’ | T - : T
Quantum Processing Unit D E - B L LA B R i ________________________
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Unified Quantum Platform — Architecture
Unified Toolchain N

Lowering Phase from Intermediate Representation
to Unified Hybrid Binary Instructions

T Unified Binary l T Unified Binary l T Unified Binary

Results Results Results

Unified Instr. l Unified Instr. l Unified Instr.
Results Results Results
4 QC Processor

Special Hardware
Result

Classical Quantum for Neutral Atoms

Processing
Control Control Unit Special Hardware

for Trapped Tons

\

Switch Control
N\ J
Parameters T Parameters ‘l' Parameters
Measurements Jv Measurements T Measurements wl
[Control Electromcs IComrol Electromcs ’Control Electromcs

@

o o o Em Em o Em o o Em Em Em o oEm Em
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Runtime Environment

Instruction Set Architecture

Microarchitecture - FPGA
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Unified Quantum Platform — Unified Runtime Environment

Map Quantum Intermediate Representation to Binary Instructions

= Takes care of scheduling instruction (“e.g., timing)
= Takes care of allocating memory (“e.g., registers)
= Generate the binary instructions

= Map to hybrid (classic and quantum) instructions according to customized ISA
Work-in-progress

= Develop an internal representation that accommodates the hybrid instructions
= Investigate hybrid classical-quantum execution protocols/workflows.
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Unified Quantum Platform — Unified Instruction Set Architecture

Current Features
= Hybrid Instruction Set

=  Mixed length of instructions
— Standard 32-bit instructions
— Special Long instructions (128 bits)
= Fine-grained qubit control
= Mixed addressing mode: Immediate &
Sliding Mask
= Support superconducting qubits &
neutral atoms

| Type Function Pseudoinstruction | Description
original eQASM [5]
Control CMP Rs,Rt Compare rf:glhlerh Rs and R.t, and store the result in the comparison flag.
BR <comp.flag>, offset If the specified flag is 17, jump to address PC + offset.
FBR <comp.flag>,Rd Fetch the specified flag register to register Rd.
Classical Data Transfer Load & Store with different subtypes.

Quantum

FMR Rd, Qi | Fetch the latest measurement result of qubit ¢ (Qi) into the register Rd.
ALU AND/OR/XOR/ADD/SUB Rd. Rs. Rt Arithmetic and logical operations
Waiting mm pecity a ume mierval (clock cycles) of waiting indicaied by Tmm.
QWAITR Rs Specity a time interval of waiting indicated by register Rs.
QBundle [PL, ] Q_Op, <target registers>>, Apply gate operations (maximum two) on specified qubit targets after

(Q_Op. <target registers>)

a time interval indicated by PI (default equals 0).

Target Register
(single-qubit)

Extended Instructions
J Offset Unconditional jump to address PC + offset.
Control - -
Classical END Indicate the end of the program.
A Histoeram SRA Start to fetch the measurement result and accumulate it in the histogram.
St FHR Rt Fetch the top M results from the histogram into memory address Rt

SMSO Sd, <Offset>, <Qubit List>

et a mas|
register Sd.

or single-qubit operations, and store 1t into single-qubit target

SMSOL Sd(l), <Offset>>, <Qubit List>

Set a long mask for single-qubit operations, and store it into single-qubit

Quantum register Sd(1) (long instruction).
. . Set an immediate value (source and target) for two-qubit operations, and
Target Register SITO Td, <Offset>,<Source>,<Target> L . (. get) 1 P
. store it into two-qubit register Td.
(two-qubit) Set an immediate value (up to seven qubit pairs) for two-qubit operations
SITOL Td(l), <Offset>, ubit Pairs Lo i . K ) B i o
M, < > <Q > Then store the indexes into two-qubit register Td(l) (long instruction).
Bit manipulation | QSet Sd/Td, <bit index>>, 1/0 Set the specific bit of quantum register to 1 or 0.
Special for Neutral Atoms
Image Fetch 1F Start to fetch the atom image into the memory
L Atom Detection TIAD Start to detect the atom positions and occupancy
Initialization -
Atom Sorting IAS Start to sort (rearrange) atoms to a defect-free target
Atom Moving 1AM Start to send control signals
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Unified Quantum Platform — Unified Quantum Control Processor
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4 QC Processor )
Features
Special Hardware
= Built on H|SEP‘Q (A H|gh|y Scalable and Classical Quantum Pr]jceessslltng for Neutral Atoms
Efficient Quantum Control Processor for Control Control : Special Hardware
Unit p
. . for Trapped Ions
Superconducting Qubits ) L
— QCP designed for superconducting S Switch Control y
qubits
. . 1. 4 C Processor )
= Technology-shared logics + Specialized _ Q _________________________ .
. Classical ' Special Hardware for Neutral Atoms \
acceleration block Control L \ ) N
; Atom Image —- Camera
= Switch control to change the modality Quantum Detection  [€ Acquisition | 1 [(CoaXPress)
. . . Control : ) binarized image ’ :
Example with Neutral-Atom Application ; ybinar ¢ :
Result : Atom ;
Processing : Sorting — Movements —E-)AWG
Unit \ K
P P 7
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Microarchitecture — Processing Core
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Evaluation - Experiment Setup

Dataset (Quantum Circuits)

v v v A N L A e e e
= Munich Quantum Toolkit (MQT) Bench — Workflow o \l/ N N
experiments al— H —d x — & 1 X — 1 —
a2l H — X O X H —
= Real quantum circuit: Grover’s operator (GO) & .
Synthetic circuits — QCP experiments L L Y X {H[—
0 - 7
Hardware Setup - -
= QOperating System: Linux o T _ ; _ ; QP 0 il
= CPU: 13th Gen Intel(R) Core(TM) i9- 13900HX o - - e
: : : repeat five times
= FPGA : Xilinx ZCU216 & Pynqg Z2 a1 _ S I Ny EE— i
Q[n]—H—éx—é—z \-l/ Y ob— S )
Gate éiens!ty =: N/N = 100%
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Evaluation - Workflow Verification |

(a) Qiskit Representation

from giskit import QuantumCircuit
from giskit_qgir import to_qir_module

circuit = QuantumCircuit(2, 2, name="giskit_gir")

circuit.h(@)

circuit.cx(@, 1)
circuit.measure([®, 1], [0, 11)

module, entry_points = to_qir_module(circuit)
IR = str(module)

with open("QIR_Representation.ll", "w") as f:

f.write(IR)

o o e o e e e e e s P

(c) Binary Representation

01000000000000000000000000000010
01010000000000000000000000000001
16000011110000000000000000000100
01011001000000000000000000000001
10000100001000000000000000000100
01010000000100000000000000000001
10000001110000100000000000000100
00101010000000000000000000000001
01010000001000000000000000000010
10000001110001000000000000000100

00101010000000000000000000000010

J
Pul Wave
3 ulse >
Diagram 5 E /\/
ynthesis

; ModuleID = 'giskit_qir’
source_filename = "qiskit_qgir"
%Qubit = type opaque

%Result = type opaque

define void @qiskit_gir() #0 {
entry:

call void @__quantum__rt__initialize(i8* null)

(b) QIR Representation

call void @__quantum__gis__h_ body(%Qubit* null)
call void @_ quantum__gis__cnot__ body(%Qubit* null, %Qubit* inttoptr (i64 1 to %Qubit*))
call void @__quantum__qgis_ mz__ body(%Qubit* null, %Result* null)
call void @_ quantum__gis_ mz__ body(%Qubit* inttoptr (i64 1 to %Qubit*), %Result* inttoptr (i64 1 to %Result*))
call void @ __quantum__rt__array_record_output(i64 2, i8* null)
call void @_ quantum__rt_ result_record_output(%Result® inttoptr (164 1 to %Result*), 18* null)
call void @_ guantum__rt_ result_record_output(%Result* null, i8* null)

ret void

}

declare void @ __quantum__rt__initialize(i8%)
declare void @ quantum__qis__h__ body(%Qubit*)

declare void @ _quantum__qis__cnot__ body(%Qubit*, %Qubit*)

declare void @ __quantum__qgis__ mz_ body(%Qubit*, %Result* writeonly) #1
declare void @ quantum__rt__array_record_output(ié4, 1i8%)

declare void @ __quantum__rt_ result_record_output(%Result*, 18%)

Munich
Quantum
Valley

attributes #08 = { "entry_point" "output_labeling_schema" "qir_profiles"="custom" "required_num_gubits"="2"

"required_num_results"="2" }
attributes #1 = { "irreversible" }

!1lvm.module.flags = 1{1@, '1, 12, 13}

'@ = 1{i32 1, !"gir_major_version", i32 1}
11 = 1{i32 7, !"gir_minor_version", i32 0}
12 = 1{i32 1, !'"dynamic_qubit_management",
13 = 1{i32 1, !'"dynamic_result_management",

il false}
i1 false}

>0 T
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Evaluation - Workflow Verification Il

( N\
(a) Qiskit Representation (b) QIR Representation
Lt . BT T e PP e e e e e P PP PP PP PP PP PRI PP
1 from giskit import QuantumCircuit 1 . ; ModuleID = 'giskit_gir
° 1 from qiskit_qir import to_gir_module H ! Source_filename = "giskit_gir"
' 1 : %Qubit = type opaque
: circuit.h(@) 1 . define void @qiskit_gir() #0 {
, circuit.cx(e, 1) 1 I entry:
, Circuit.measure([0, 1], [0, 1]) : : call void @__quantum__rt__initialize(i8* null)
. . . 1 . . . . ' > . call void @_ quantum__qgis__h_ body(%Qubit* null)
) module, entry points = to_gir_module(circuit) ' : call void @__quantum__qis__cnot__body(%Qubit* null, %Qubit* inttoptr (i64 1 to %Qubit*))
a u a n u l I I CI rcu I S re p rese n I ng e S a e 1 IR = str(module) f : call void @_quantum__qis_mz__body(%Qubit* null, %Result* null) :
1 1 H call void @__quantum__gis__mz__body(%Qubit* inttoptr (i64 1 to %Qubit*), %Result* inttoptr (i64 1 to %Result*)) :
1 with open("QIR Representation.ll", "w") as f: 1 : call void @__quantum__rt__array_record_output(i64 2, i8* null)
. . . ! f.write(IR) 1 . call void @__quantum__rt__result_record_output(%Result* inttoptr (i64 1 to %Result*), i8* null
I n IS klt " ] © call void @_quantum__rt__result_record_output(%Result* null, i8* null)
e e e J : ret void
(c) Binary Representation K
. . . s B E declare void @__quantum__rt__initialize(is*)
0 10 ! declare void @__quantum__qis__h__body(%Qubit*)
orres p ondin g m p ementation 01916006006000006000906900908001  declare void @_quantun_qis_cnot. body (4Qubit®, %qubit)
01011001000000000000000000000001 : declare void @__quantum__gis__mz__body(%Qubit*, %Result* writeonly) #1
10000168601060068006506066000100 4— | i declare void 6_quantum_rt_array_record_output(i6d, i8*)
. . . 01010000000100000000000000000001 : declare void @ quantum__rt_ result_record output(%Result*, i8*)
° E 10000001110000100000900000000100 H i i ) i
ach instruction is represented by an | sbtributes 40 - { “entry_point “output_Labeling Schens® "qir_profiLes""custon’ "required_num qubits’ 2
01010000001000000000000000000010 ! "required_num_results"="2" }
10000001110001000000900000000100 i attributes #1 = { "irreversible" }

00101010000000000000000000000010

external function call to the backend > B R e LR

| w a * 10 = 1{i32 1, I"gir_major_version", i32 1}
ave I 11 = 1{i32 7, 1"gir_minor_version", i32 @}
. . Egzi:e —_> Dli):lsrim e /\/ © 12 = 1{is2 1, !"dynamic_qubit management", i1 false}
runtime libra ry ? B | ymihesis P 13 1{i32 1, 1"dynamic_result_management”, i1 false} :
\ J

c) Binary instructions

| Qiskit Representation | Binary Instruction Representation

d) Waveform generation N/A 01000000000000000000000000000010 - Execution environment initialization
. circuith(0) 01010000000000000000000000000001 - Memory instruction

* By the control logics on FPGA ' 1000001 1110000000000000000000100 - Hadamard operation
01011001000000000000000000000001 - Memory instruction
10000100001000000000000000000100 - CNOT operation
01010000000100000000000000000001 - Memory instruction

10000001 110000100000000000000100 - First qubit measurement operation
00101010000000000000000000000001 - Fetch last measurement
01010000001000000000000000000010 - Memory instruction

10000001 110001000000000000000100 - Second qubit measurement operation
00101010000000000000000000000010 - Fetch last measurement

circuit.cx(0, 1)

circuit.measure([0, 1], [0, 1])
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Evaluation - Memory and Time Performance
=  Super-linearly scales with the number of qubits (size of quantum codes)

= Software infrastructure can expand to accommodate this growth without facing
exponential increases in resource

= Guarantee for the usability in larger and more complex quantum algorithms

Performance/Scalability Analysis Performance/Scalability Analysis
3000 , :
—— Binary Instructions
——— Machine Code (QIR.0) 1201
25007 —— LLvM IR (QIR.II)

E- 100 -
2000 c

Q o 80-
§= E
- (=

g 1500 ~ 60|
o o
2 5

i 1000- 0 401
<
i

500 04

-
of e "
0_ T T T T T
| | ' y : 20 40 60 BO 100
20 40 60 80 100 ,
Number of Qubits Number of Qubits
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Evaluation — QISA Efficiency

=  Comparing with state-of-the-art works [2]

using 100 qubits (exclude eQASM, as 100 20001 W HISEP-Q
qubits are not supported). 17501 — qQ\L/’ASAR
= Four datasets: GO and synthetic quantum §1500-
circuits with varied gate density. = 12501
— Gate density : (the degree of the available fg 10004
gates implemented in the circuits at the same g 0.
time) £

500 1

= 62% improvement in real quantum circuit 250

= Average 28% improvement in synthetic 04
circuits

GO Syn_10 Syn_50 Syn_100
Quantum Circuits Benchmarks
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Less efficient in the synthetic circuits:

In synthetic circuits there are high-density two-qubit gates at the same time stamp. As we use immediate mode to address two qubit operations, we need more efforts to encode this kind of operation.



Munich
Chair of Computer Architecture and Parallel Systems = Department of Computer Engineering = Technical University of Munich @ O.uz:/ntlll.lm x m
alley
| ' - labili
Evaluation — QISA Scalability

= Scalability performance
= Two datasets: GO and synthetic quantum circuits with 50% gate density.

= HIiSEP-Q: Logarithmic increase
— Trend of increase is significantly lower than QUASAR

1000
BN HIiSEP-Q

1 W QUASAR

21600 mmm HisEP-Q
514007 s QuAsAR

(o]
o
o

(o))
o
o

Program Size (Bytes)
N OB
o o
o o o

8 16 32 64 96 32 64 96
Qubit Numbers (bits) Qubit Numbers (bits)
(a) GO (b) Syn_50
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Less efficient in the synthetic circuits:

In synthetic circuits there are high-density two-qubit gates at the same time stamp. As we use immediate mode to address two qubit operations, we need more efforts to encode this kind of operation.
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Evaluation - Microarchitecture

= Zyng SoC implementation
= (Constant power consumption
= Negligible overhead of onboard histogram

= Logarithmically increased resource utilization with number of qubits
— Only 30% of LUT and 15% of LUTRAM, when testing with 96 qubits

01 LUT
2.0y Histogram 51 FF
LUTRAM

—_—
b

Histogram

= =2 NN W
o O
N
Y On

Power (W)
o
b

o
o

Resource Utilization (\%)

o
o
o o

8 16 32 64 96 16 32 64
Qubit Numbers (bits) Qubit Numbers (bits)

(a) Power (b) Resource Utilization
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Conclusion & Outlook

Contact:
Conclusion Xiaorang Guo

= We implemented an abstraction layer needed to
realize a unified quantum platform
— A novel unified runtime library
— Aunified hybrid ISA and QCP
= Comprehensive workflow verification
= The first idea of a unified and open quantum

platform and to implement it within a tight
HPCQC integration setup

Xiaorang.guo@tum.de

https://www.ce.cit.tum.de/caps/startseite/

Future work:

= Extension & optimization of the ISA and
corresponding QCP

= Extension of the execution/runtime
environment.
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