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Abstract The rapid advancements in quantum computing necessitate a scientific
and rigorous approach to the construction of a corresponding software ecosystem,
a topic underexplored and primed for systematic investigation. This chapter takes
an important step in this direction. It presents scientific considerations essential for
building a quantum software ecosystem that makes quantum computing available
for scientific and industrial problem-solving. Central to this discourse is the concept
of hardware-software co-design, which fosters a bidirectional feedback loop from
the application layer at the top of the software stack down to the hardware.
This approach begins with compilers and low-level software that are specifically
designed to align with the unique specifications and constraints of the quantum
processor, proceeds with algorithms developed with a clear understanding of
underlying hardware and computational model features, and extends to applica-
tions that effectively leverage the capabilities to achieve a quantum advantage.
We analyze the ecosystem from two critical perspectives: the conceptual view,
focusing on theoretical foundations, and the technical infrastructure, addressing
practical implementations around real quantum devices necessary for a functional
ecosystem. This approach ensures that the focus is toward promising applications
with optimized algorithm-circuit synergy, while ensuring a user-friendly design, an
effective data management, and an overall orchestration. This chapter thus offers a
guide to the essential concepts and practical strategies necessary for developing a
scientifically grounded quantum software ecosystem.
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universal gateset

qubit-specific measurement capability
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Promising Applications

Quantum
Simulation

today

= vibronic structure and dynamics

» atomistic simulation of
engineering alloys

= electron transfer in
organic photovoltaics

Gary Schmiedinghoff, German Aerospace Center, 2025/2/24

Combinatorial

Optimization

¥Y¥¥.¥¥¥

1 r I I

Gatel Gate2 Gate3 Gate 8 Gate9 Gate 10

Gate 11 Gate 12 Gate 13 Gate 18 Gate 19  Gate 20

Lo o I

+4+4-4+4+ 4

quantum state compression of
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= @Goal: develop QSE method even before complex quantum software appears

= Challenge: key differences exist between QC software & classical software

Aspects Include

Requirement Software :ﬂ
Engineering Design > |

Models &

Representations o = =

= involves domain experts = hybrid formulations
= hardware sets limits = interfaces &
encoding schemes

= ensure reusability!
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Error Correction

corrects bit- & phase-flips
uses redundant qubits
requires noise below

Error Mitigation

= post-processing of results threshold
, = use extra measurements
Error Suppression - examples:
= improves control = zero-noise extrapolation
= examples: = readout error mitigation

= dynamical decoupling
= spin-echo pulses
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Does our Software Fulfill its Requirements?

Challenge: / Sozl: T
stochastic nature + noise ( ) Ign-quality solution

(high probability close to the desired result)

Required Ingredients

Theoretical Proof Practical Validation Working Toolchain

quantum algorithm - code code
satisfies implements translated correctly to
oe s pesicaraliene desired algorithm executable quantum circuit
g P (quantum + classical part) (+ correctly working hardware)

Research Question:

If quantum computers outperform classical computers,
how can we ensure correctness?
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m Goal: Quantify the Performance of Soft- and Hardware

&b Current Limitations :
Benchmarks only give

= tailored to specific device information about

= only cover single aspects current devices!
= not “how fast” but “how good”

Typical Metrics /" Typical Methods

. hardwarebmetrics: = quality rr\netrics: = state and process tomography
= #qubits = coherence times - - i
~ Conmeeniiy . gate/circuit fidelities randomized benchmarking (randomly insert gates that

= gateset = quantum volume allow efficient classical simulation)

@ Desired Future Insights

= distinct standard suites to assess:
= performance and correctness (comparison between quantum HW & SW)
= guantum advantage (fastest QC vs. fastest classical)
= near-term practicability (cost-to-solution of application)
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